201 research outputs found

    The population of galaxy-galaxy strong lenses in forthcoming optical imaging surveys

    Get PDF
    Ongoing and future imaging surveys represent significant improvements in depth, area and seeing compared to current data-sets. These improvements offer the opportunity to discover up to three orders of magnitude more galaxy-galaxy strong lenses than are currently known. In this work we forecast the number of lenses discoverable in forthcoming surveys and simulate their properties. We generate a population of statistically realistic strong lenses and simulate observations of this population for the Dark Energy Survey (DES), Large Synoptic Survey Telescope (LSST) and Euclid surveys. We verify our model against the galaxy-scale lens search of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS), predicting 250 discoverable lenses compared to 220 found by Gavazzi et al (2014). The predicted Einstein radius distribution is also remarkably similar to that found by Sonnenfeld et al (2013). For future surveys we find that, assuming Poisson limited lens galaxy subtraction, searches in DES, LSST and Euclid datasets should discover 2400, 120000, and 170000 galaxy-galaxy strong lenses respectively. Finders using blue minus red (g-i) difference imaging for lens subtraction can discover 1300 and 62000 lenses in DES and LSST. The uncertainties on the model are dominated by the high redshift source population which typically gives fractional errors on the discoverable lens number at the tens of percent level. We find that doubling the signal-to-noise ratio required for a lens to be detectable, approximately halves the number of detectable lenses in each survey, indicating the importance of understanding the selection function and sensitivity of future lens finders in interpreting strong lens statistics. We make our population forecasting and simulated observation codes publicly available so that the selection function of strong lens finders can easily be calibrated.Comment: Accepted for publication in ApJ. The code is publicly available at http://github.com/tcollett/LensPop . Tables of properties of the lenses discoverable by DES, LSST and Euclid are also available at the same ur

    Cosmological Constraints from the double source plane lens SDSSJ0946+1006

    Get PDF
    We present constraints on the equation of state of dark energy, ww, and the total matter density, ΩM\Omega_{\mathrm{M}}, derived from the double-source-plane strong lens SDSSJ0946+1006, the first cosmological measurement with a galaxy-scale double-source-plane lens. By modelling the primary lens with an elliptical power-law mass distribution, and including perturbative lensing by the first source, we are able to constrain the cosmological scaling factor in this system to be β−1=1.404±0.016\beta^{-1}=1.404 \pm 0.016, which implies ΩM=0.33−0.26+0.33\Omega_{\mathrm{M}}= 0.33_{-0.26}^{+0.33} for a flat Λ\Lambda cold dark matter (Λ\LambdaCDM) cosmology. Combining with a cosmic microwave background prior from Planck, we find ww = −1.17−0.21+0.20-1.17^{+0.20}_{-0.21} assuming a flat wwCDM cosmology. This inference shifts the posterior by 1σ{\sigma} and improves the precision by 30 per cent with respect to Planck alone, and demonstrates the utility of combining simple, galaxy-scale multiple-source-plane lenses with other cosmological probes to improve precision and test for residual systematic biases.Comment: 9 Pages, 7 Figures. Updated version as published in MNRA

    Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    Get PDF
    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z_s= 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec is ~10^(14.2) M⊙. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is 270^(+48)_(-76) kpc, and that the inner density falls with radius to the power −0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as r^(-1). The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as r^(-0.8) and r^(-1.0)) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them

    Localizing merging black holes with sub-arcsecond precision using gravitational-wave lensing

    Get PDF
    The current gravitational-wave localization methods rely mainly on sources with electromagnetic counterparts. Unfortunately, a binary black hole does not emit light. Due to this, it is generally not possible to localize these objects precisely. However, strongly lensed gravitational waves, which are forecasted in this decade, could allow us to localize the binary by locating its lensed host galaxy. Identifying the correct host galaxy is challenging because there are hundreds to thousands of other lensed galaxies within the sky area spanned by the gravitational-wave observation. However, we can constrain the lensing galaxy's physical properties through both gravitational-wave and electromagnetic observations. We show that these simultaneous constraints allow one to localize quadruply lensed waves to one or at most a few galaxies with the LIGO/Virgo/Kagra network in typical scenarios. Once we identify the host, we can localize the binary to two sub-arcsec regions within the host galaxy. Moreover, we demonstrate how to use the system to measure the Hubble constant as a proof-of-principle application.Comment: 5 pages (main text) + 5 pages (methods+references), 5 figures. Accepted to MNRA

    Automated Lensing Learner: Automated Strong Lensing Identification with a Computer Vision Technique

    Get PDF
    Forthcoming surveys such as the Large Synoptic Survey Telescope (LSST) and Euclid necessitate automatic and efficient identification methods of strong lensing systems. We present a strong lensing identification approach that utilizes a feature extraction method from computer vision, the Histogram of Oriented Gradients (HOG), to capture edge patterns of arcs. We train a supervised classifier model on the HOG of mock strong galaxy-galaxy lens images similar to observations from the Hubble Space Telescope (HST) and LSST. We assess model performance with the area under the curve (AUC) of a Receiver Operating Characteristic (ROC) curve. Models trained on 10,000 lens and non-lens containing images images exhibit an AUC of 0.975 for an HST-like sample, 0.625 for one exposure of LSST, and 0.809 for 10-year mock LSST observations. Performance appears to continually improve with the training set size. Models trained on fewer images perform better in absence of the lens galaxy light. However, with larger training data sets, information from the lens galaxy actually improves model performance, indicating that HOG captures much of the morphological complexity of the arc finding problem. We test our classifier on data from the Sloan Lens ACS Survey and find that small scale image features reduces the efficiency of our trained model. However, these preliminary tests indicate that some parameterizations of HOG can compensate for differences between observed mock data. One example best-case parameterization results in an AUC of 0.6 in the F814 filter image with other parameterization results equivalent to random performance.Comment: 18 pages, 14 figures, summarizing results in figure

    The effects of velocities and lensing on moments of the Hubble diagram

    Get PDF
    We consider the dispersion on the supernova distance-redshift relation due to peculiar velocities and gravitational lensing, and the sensitivity of these effects to the amplitude of the matter power spectrum. We use the MeMo lensing likelihood developed by Quartin, Marra & Amendola (2014), which accounts for the characteristic non-Gaussian distribution caused by lensing magnification with measurements of the first four central moments of the distribution of magnitudes. We build on the MeMo likelihood by including the effects of peculiar velocities directly into the model for the moments. In order to measure the moments from sparse numbers of supernovae, we take a new approach using Kernel Density Estimation to estimate the underlying probability density function of the magnitude residuals. We also describe a bootstrap re-sampling approach to estimate the data covariance matrix. We then apply the method to the Joint Light-curve Analysis (JLA) supernova catalogue. When we impose only that the intrinsic dispersion in magnitudes is independent of redshift, we find σ8=0.44−0.44+0.63\sigma_8=0.44^{+0.63}_{-0.44} at the one standard deviation level, although we note that in tests on simulations, this model tends to overestimate the magnitude of the intrinsic dispersion, and underestimate σ8\sigma_8. We note that the degeneracy between intrinsic dispersion and the effects of σ8\sigma_8 is more pronounced when lensing and velocity effects are considered simultaneously, due to a cancellation of redshift dependence when both effects are included. Keeping the model of the intrinsic dispersion fixed as a Gaussian distribution of width 0.14 mag, we find σ8=1.07−0.76+0.50\sigma_8 = 1.07^{+0.50}_{-0.76}.Comment: 16 pages, updated to match version accepted in MNRA

    Testing Cosmology with Double Source Lensing

    Full text link
    Double source lensing provides a dimensionless ratio of distance ratios, a "remote viewing" of cosmology through distances relative to the gravitational lens, beyond the observer. We use this to test the cosmological framework, particularly with respect to spatial curvature and the distance duality relation. We derive a consistency equation for constant spatial curvature, allowing not only the investigation of flat vs curved but of the Friedmann-Lema\^itre-Robertson-Walker framework itself. For distance duality, we demonstrate that the evolution of the lens mass profile slope must be controlled to ≳5\gtrsim5 times tighter fractional precision than a claimed distance duality violation. Using LENSPOP forecasts of double source lensing systems in Euclid and LSST surveys we also explore constraints on dark energy equation of state parameters and any evolution of the lens mass profile slope.Comment: 10 pages, 7 figures. v2 matches version accepted to JCA

    Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE

    Get PDF
    2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2\arcsec~to the north-east and 1\arcsec~to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1\farcs45±\pm0\farcs04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff∼r_{\rm eff}\sim 9\arcsec). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18%±818 \% \pm 8 \% within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.Comment: 12 pages, 12 Figures, 4 Tables. Accepted in MNRA
    • …
    corecore